
High feed milling cutters

ød

XMR01 🖸 M 🔣 😒

S-type insert, straight shank

Specification of tools

	T	Otest			Basic dime	nsions(mm))		Number of	Weight
	Туре	Stock	ØD	ap	ae	L1	L	ød	teeth Z	(kg)
XMR01	-020-G20-SD06-02		20	0.8	4.45	50	130	20	2	0.26
	-020-G20-SD06-02CL	\bigtriangleup	20	0.8	4.45	100	180	20	2	0.364
	-020-G20-SD06-02CXL	\bigtriangleup	20	0.8	4.45	130	250	20	2	0.522
	-025-G25-SD06-03		25	0.8	4.45	60	140	25	3	0.46
	-025-G25-SD06-03CL	\bigtriangleup	25	0.8	4.45	120	200	25	3	0.670
	-025-G25-SD06-03CXL	Δ	25	0.8	4.45	130	250	25	3	0.850
	-025-G25-SD09-02		25	1.4	6.88	60	140	25	2	0.5
	-025-G25-SD09-02CL	\triangle	25	1.4	6.88	120	200	25	2	0.636
	-025-G25-SD09-02CXL	Δ	25	1.4	6.88	180	300	25	3	0.980
	-032-G32-SD09-03		32	1.4	6.88	90	150	32	3	0.8
	-032-G32-SD09-03CL	\triangle	32	1.4	6.88	120	200	32	3	1.006
	-032-G32-SD09-03CXL	\triangle	32	1.4	6.88	180	300	32	3	1.551
	-035-G32-SD09-03		35	1.4	6.88	70	150	32	3	0.8
	-035-G32-SD09-03CL	Δ	35	1.4	6.88	120	200	32	3	1.037
	-035-G32-SD09-03CXL	Δ	35	1.4	6.88	180	300	32	3	1.582
	-032-G32-SD12-02		32	1.8	8.77	90	150	32	2	0.8
	-032-G32-SD12-02CL	Δ	32	1.8	8.77	120	200	32	2	1.002
	-032-G32-SD12-02CXL	\bigtriangleup	32	1.8	8.77	180	300	32	2	1.547
	-040-G40-SD12-03		40	1.8	8.77	70	150	40	3	1.3
	-040-G40-SD12-03CL	Δ	40	1.8	8.77	70	250	40	3	2.118
	-040-G40-SD12-03CXL	Δ	40	1.8	8.77	70	300	40	3	2.579
	-040-G40-SD15-02		40	2.2	11.7	70	200	40	2	1.6
	-040-G40-SD15-02CL	\triangle	40	2.2	11.7	70	250	40	2	2.061
	-040-G40-SD15-02CXL	\triangle	40	2.2	11.7	70	300	40	2	3.522

▲Stock available △Make-to-order

XMR01-020-G20-SD06QL-02CL/CXL

Standard toolholder sery ______Long sery

Grade selection guide B19-B23

Extended sery

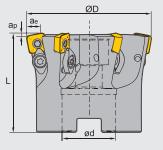
>> Spare parts

	Screw	Clamp Screw	Clamp	Wre	ench	
Tool type	-	-	0	~	×	U
XMR0100-SD0600	I60M2.2×5.5			WT07IP		100
XMR0100-SD0900	I60M3.5×08TT	I60M4×8.4	WD 204	WT10IP	WT15IP	P
XMR0100-SD1200	I60M	4×8.4	WD-204	WT	15IP	
XMR0100-SD1500	I60M	5×13	WD-208	WT20IP		

Tools code key B24-B25

Technical data B234-B240

Indexable Milling Tools


MI

High feed milling cutters

XMR01 📔 M 🗹 😒

S type insert milling cutter


Specification of tools

	Turne	Stock		Basic	dimensions	s(mm)		Number of teeth	Type of	Weight
	Туре	Stock	ØD	ap	a _e	L	ød	Z	coupling	(kg)
XMR01	-050-A22-SD06-07C		50	0.8	5.8	40	22	7	А	0.36
	-063-A22-SD06-10C		63	0.8	5.8	40	22	10	A	0.53
	-063-A27-SD06-10C		63	0.8	5.8	50	27	10	A	0.57
	-050-A22-SD09-04C		50	1.4	8.8	40	22	4	A	0.3
	-063-A22-SD09-06C		63	1.4	8.8	40	22	6	A	0.5
	-063-A27-SD09-06C		63	1.4	8.8	50	27	6	A	0.6
	-063-A22-SD12-05C		63	1.8	11.7	40	22	5	A	0.5
	-063-A27-SD12-05C		63	1.8	11.7	50	27	5	А	0.6
	-080-A27-SD12-05C		80	1.8	11.7	50	27	5	А	0.9
	-100-B32-SD12-06		100	1.8	11.7	50	32	6	В	1.8
	-080-A27-SD15-05C		80	2.2	14	50	27	5	A	0.78
	-080-A32-SD15-05		80	2.2	14	50	32	5	A	0.72
	-100-B32-SD15-07		100	2.2	14	50	32	7	В	1.2
	-125-B40-SD15-09		125	2.2	14	63	40	9	В	2.9
	-160-B40-SD15-12		160	2.2	14	63	40	12	В	4.4

▲Stock available ∆Make-to-order

>> Spare parts

	Screw	Clamp Screw	Clamp	Wre	ench	
Tool type	1 m	97	0	>	/	
XMR0100-SD0600	I60M2.2×5.5			WT07IP		
XMR0100-SD0900	I60M3.5×08TT	I60M4×8.4	WD-204	WT10IP	WT15IP	
XMR0100-SD1200	160M	4×8.4	VVD-204	WT ²	I5IP	Do.
XMR0100-SD1500	160M	5×13	WD-208	WT20IP		

C

	>Selec	ction of inserts	;																<u></u>										
Insert shape SDMT06T208-DM 6.35 6.35 1.2 7.2 <th7.2< th=""> 7.2 7.2</th7.2<>	ØI.C	ød		Vorkpiece	Stee Stai Cas	el inless it iron i-ferro	steel	etal	•	"	"	(1)	(C) (C) (C)		2	C				8 8		0 0 0			0		\odot	<u> </u>	
SDMT06T208-DM 6.35 6.35 0.8 2.5 15° ★ ★ •<			Ва	isic din	nens	ions	(mm)		С	VD	Со	atin	g				P\	/D	Coa	atin	ıg			Cer	met			
SDMT06T208-DM 6.35 6.35 0.8 2.5 15° ★ ★ ●<	Insert shape	Туре	ØI.C	L	r	s	ød	α	YBC301	YBC302	YBM251	YBM253	YBM351	YBD152	YBD252	YBG102	YBG202	YBG205	YB9320	YBG302	YBG152	YBG252	YBS203	YBS303	YNG151	YNG151C	YC30S	YD051	YD101 YD201
SDMT120412-DM 12.7 12.7 12.47 4.4 15° ★ ★ •		SDMT06T208-DM	6.35	6.35	0.8	2.58	2.5	15°		★								_		_									
SDMT150520-DM 15.875 15.875 2.0 5.56 5.5 15° ★ ● ● ○ ●		SDMT09T312-DM	9.525	9.525	1.2	3.97	4.0	15°		★			★						•	0									
SDMT06T208-PM 6.35 6.35 0.8 2.58 2.5 15° ★ ○ ● <td< td=""><td></td><td>SDMT120412-DM</td><td>12.7</td><td>12.7</td><td>1.2</td><td>4.76</td><td>4.4</td><td>15°</td><td></td><td>★</td><td></td><td></td><td>★</td><td></td><td></td><td></td><td></td><td>★</td><td>•</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		SDMT120412-DM	12.7	12.7	1.2	4.76	4.4	15°		★			★					★	•	0									
SDMT09T312-PM 9.525 9.525 1.2 3.97 4.0 15° ★ ● ● 5 12.7 12		SDMT150520-DM	15.875	15.875	2.0	5.56	5.5	15°		*			★					•	•	0									
SDMT120412-PM 12.7 12.7 12.476 4.4 15° ★ ● ● ● ● SDMT150520-PM 15.875 15.875 2.0 5.56 5.5 15° ★ ● ● ● ● SDMT06T208-NM 6.35 6.35 0.8 2.58 2.5 15° ● ● ● SDMT09T312-NM 9.525 9.525 1.2 3.97 4.0 15° ○		SDMT06T208-PM	6.35	6.35	0.8	2.58	2.5	15°		★		0						•						•					
SDMT150520-PM 15.875 15.875 2.0 5.56 5.5 15° ★ ●	0	SDMT09T312-PM	9.525	9.525	1.2	3.97	4.0	15°		*		•						•											
SDMT06T208-NM 6.35 6.35 0.8 2.5 15° • <td></td> <td>SDMT120412-PM</td> <td>12.7</td> <td>12.7</td> <td>1.2</td> <td>4.76</td> <td>4.4</td> <td>15°</td> <td></td> <td>*</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>		SDMT120412-PM	12.7	12.7	1.2	4.76	4.4	15°		*		•						•											
SDMT09T312-NM 9.525 9.525 1.2 3.97 4.0 15° O O O SDMT120412-NM 12.7 12.7 1.2 4.76 4.4 15° O		SDMT150520-PM	15.875	15.875	2.0	5.56	5.5	15°		*		•						•											
SDMT120412-NM 12.7 1.2 4.76 4.4 15° O O O O		SDMT06T208-NM	6.35	6.35	0.8	2.58	2.5	15°				•												•					
	6	SDMT09T312-NM	9.525	9.525	1.2	3.97	4.0	15°				0											0	0					
SDMT150520-NM 15.875 15.875 2.0 5.56 5.5 15° ● ●	C	SDMT120412-NM	12.7	12.7	1.2	4.76	4.4	15°				0							0				0	0					
		SDMT150520-NM	15.875	15.875	2.0	5.56	5.5	15°				•							•					•					

Chipbreaker introduction:

-PM chipbreaker has sharp cutting edge, it is more suitable for machining with power shortage and for relatively adhesive materials, such as stainless steel and Ti alloy, etc.

-DM chipbreaker has blunt cutting edge and is relatively suitable for machining of hard materials such as hardened steel and cast iron, etc.

Indexable Milling Tools

MIL

ING

W-type insert, straight shank

Specification of tools

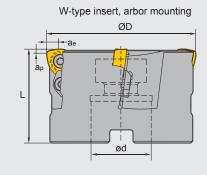
	Time	Stock			Basic dime	nsions(mm))	-	Number of	Weight
	Туре	SLOCK	ØD	ap	ae	L1	L	ød	teeth Z	(kg)
XMR01	-020-G20-WP05-02-M	\bigtriangleup	20	1.5	3.8	50	130	20	2	0.2
	-020-G20-WP05-02-L	\bigtriangleup	20	1.5	3.8	100	180	20	2	0.3
	-020-G20-WP05-02-XL	\bigtriangleup	20	1.5	3.8	130	250	20	2	0.8
	-025-G25-WP06-02-M	\bigtriangleup	25	1.5	4.35	60	140	25	2	0.4
	-025-G25-WP06-02-L	\bigtriangleup	25	1.5	4.35	120	200	25	2	0.6
	-025-G25-WP06-02-XL	\bigtriangleup	25	1.5	4.35	180	300	25	2	1.0
	-032-G32-WP06-03-M	\bigtriangleup	32	1.5	4.35	70	150	32	3	0.8
	-032-G32-WP06-03-L	\bigtriangleup	32	1.5	4.35	120	200	32	3	1.0
	-032-G32-WP06-03-XL	\bigtriangleup	32	1.5	4.35	180	300	32	3	1.6
	-040-G32-WP06-03-M	\bigtriangleup	40	1.5	4.35	50	150	32	3	0.9
	-040-G32-WP06-03-L	\bigtriangleup	40	1.5	4.35	50	250	32	3	1.5
	-040-G32-WP06-03-XL	\bigtriangleup	40	1.5	4.35	50	300	32	3	1.8
	-040-G32-WP08-02-M	\bigtriangleup	40	1.5	5.66	50	150	32	2	0.9
	-040-G32-WP08-02-L	\bigtriangleup	40	1.5	5.66	50	250	32	2	1.5
	-040-G32-WP08-02-XL	\bigtriangleup	40	1.5	5.66	50	300	32	2	1.9
	-050-G32-WP09-02-M		50	3.0	6.8	50	150	32	2	1.9
	-050-G32-WP09-02-L	\bigtriangleup	50	3.0	6.8	50	250	32	2	2.5

▲Stock available △Make-to-order

Spare parts

	Clamp/Insert screw	Clamp	Wre	ench	
Tool type		0	~	×	E
XMR0100-WP0500	I60M3.5×6.5		WT10P		
XMR0100-WP0600	I60M4×8.4		WT15P		
XMR0100-WP0800				WTOOT	3
XMR0100-WP0900	I60M5×13	WD-208		WT20IT	

Tools code key B24-B25


Grade selection guide B19-B23

High feed milling cutters

XMR01 DM K

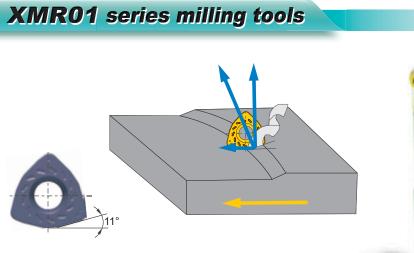
Specification of tools

	Tuno	Stock		Basic	dimensions	s(mm)	-	Number of teeth	Type of	Weight
	Туре	Stock	ØD	ap	ae	L	ød	Z	coupling	(kg)
XMR01	-050-A22-WP06-04	\bigtriangleup	50	1.5	4.35	40	22	4	А	0.4
	-050-A22-WP08-03	Δ	50	1.5	5.66	50	22	3	A	0.4
	-063-A22-WP08-04C	Δ	63	1.5	5.66	50	22	4	A	0.7
	-063-A27-WP08-04C	Δ	63	1.5	5.66	50	27	4	A	0.7
	-080-A27-WP08-05C	Δ	80	1.5	5.66	63	27	5	A	1.5
	-100-B32-WP08-06	Δ	100	1.5	5.66	63	32	6	В	2.2
	-125-B40-WP08-07	\bigtriangleup	125	1.5	5.66	63	40	7	В	3.5
	-160-B40-WP08-08	\bigtriangleup	160	1.5	5.66	63	40	8	В	6.0
	-063-A22-WP09-03C	Δ	63	3.0	6.8	50	22	3	A	0.7
	-080-A27-WP09-04C	Δ	80	3.0	6.8	63	27	4	A	1.4
	-100-B32-WP09-05	\bigtriangleup	100	3.0	6.8	63	32	5	В	2.1
	-125-B40-WP09-06	\bigtriangleup	125	3.0	6.8	63	40	6	В	3.7
	-160-B40-WP09-07	\bigtriangleup	160	3.0	6.8	63	40	7	В	6.3

▲Stock available △Make-to-order

>> Spare parts

	Clamp/Insert screw	Clamp	Wre	nch	
Tool type	5	0	-	×	
XMR01WP06	I60M4×8.4		WT15S		
XMR0100-WP0800	I60M5×13	WD-208		WTOOIT	
XMR0100-WP0900	I60M5×13	WD-208		WT20IT	

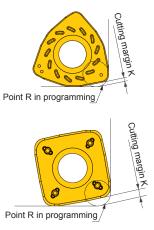

Indexable Milling Tools MILLING

				🙄 G	Good w	orking	con	ditio	n 😃	Nc	rma	l wo	orkin	g co	nditio	on 🌔	Ba	d wo	rking	g co	nditio	on			
		vv	< P	Steel			(***	()	((***	8			(B (•) 🙁	1	$^{\odot}$			\odot	\odot	\otimes	
ØI.C			M	Stainle	ss stee	el	•	<mark></mark>	<u></u>	<u></u>	8			(<u>.</u>) 🙁		0			0	0	\otimes	
-	ød+-	יייטי קטופטים ווומופוומו		Cast ir	on							(\odot	\bigcirc				($^{\circ}$					C)
r 🔍		lide		Non-fe	rrous r	netal																			()
	- S	Iq	S	Heat resis	stant alloy	, Ti alloy								0	2	0				۳	\odot				
		Bas	sic dir	nensio	ons(m	ım)		C	VD	Со	atir	ıg				PVI	D Co	oatir	ng			Cer	met		nented rbide
nsert shape	Туре	ØI.C	r	S	ød	α	YBC301	YBC302	YBM251	YBM253	YBM351	YBD152	YBD252	YBG102	YBG202	YBG205	YBG302	YBG152	YBG252	YBS203	YBS303	YNG151	YNG151C		
	WPGT050315ZSR	7.94	1.5	3.5	4.0	11°		*		•	•														
	WPGT060415ZSR	9.525	1.5	4.2	4.4	11°		★		•	•				(•									
	WPGT080615ZSR	12.85	1.5	6.35	5.5	11°		★		•	•				•	•									
	WPGT090725ZSR	15.00	2.5	7	5.5	11°		*		•	•				(
	WPGT050315ZSR-PM	7.94	1.5	3.5	4.0	11°		★			•				(
0	WPGT060415ZSR-PM	9.525	1.5	4.2	4.4	11°		★			•				(0				
-	WPGT080615ZSR-PM	12.85	1.5	6.35	5.5	11°		*			•				(0				
	WPGT090725ZSR-PM	15.00	2.5	7.00	5.5	11°		★			•				(

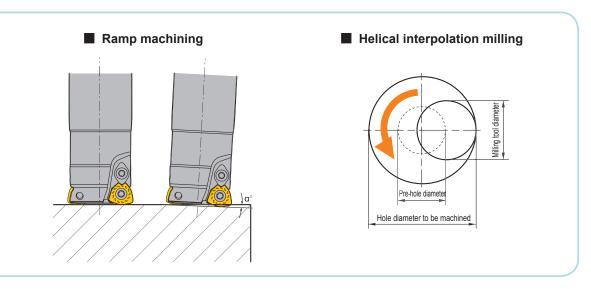
Chipbreaker introduction:

-PM chipbreaker has sharp cutting edge, it is more suitable for machining with power shortage and for relatively adhesive materials, such as stainless steel and Ti alloy, etc.

General chipbreaker has blunt cutting edge and is relatively suitable for machining of hard materials such as hardened steel and cast iron, etc.



The main feature of high feed tools is to resolve the major cutting force to the axial direction, greatly reducing the radial cutting force, thus improve tool's vibration resistance. In addition, this structure can effectively reduce vibration in long-overhang milling operation.



Approximate R in machining program

Applicable insert	Approximate R(mm)	Cutting margin K(mm)
WPGT050315ZSR/-PM	2	0.5
WPGT060415ZSR/-PM	2.5	0.7
WPGT080615ZSR/-PM	2.5	0.7
WPGT090725ZSR/-PM	4.5	1.2
SDMT06T208-DM/-PM/NM	1.6	0.5
SDMT09T312-DM/-PM/NM	2.5	0.87
SDMT120412-DM/-PM/NM	4.0	0.93
SDMT150520-DM/-PM/NM	4.0	1.38

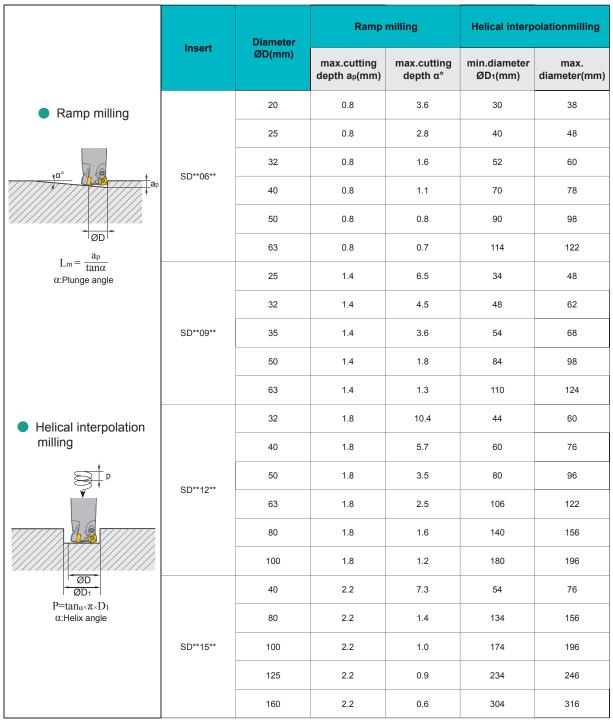
Different machining styles

- Reduce the feed rate in ramp and helical machining operations.
- Set the axial feed rate below 0.2mm/rev in drilling operation.
- Be careful ! Long chips may fly off in drilling operation.
- The cutting depth of each rotation must not exceed the maximum cutting depth (ap).

• The S-type insert can be used for plunge milling in addition to the machining operations mentioned above.

Selection guide for XMR01 series

XMR01 series tools (with SDDD inserts) have perfect edge strength and good economical efficiency, advantageous in face milling.


XMR01 series tools (with WPDD inserts) has good capability of chip removal, proficient in cavity milling.

Ramp milling, helical interpolation milling

		Diameter	Ramp	milling	Helical interp	olationmilling
	Insert	ØD(mm)	Max.cutting depth a₀(mm)	Max.plunge angle α°	Min.diameter ØD1(mm)	Max.diameter (mm)
Ramp milling	WP**05**	20	1.5	12	24	37
λα° +		25	1.5	8.8	31	47
ap	MOttoot	32	1.5	5	45	61
+ gp +	WP**06*	40	1.5	3.2	61	77
$L_m = \frac{a_p}{\tan \alpha}$		50	1.5	2.8	81	97
α :Plunge angle		40	1.5	9	52	77
		50	1.5	5.4	71	97
		63	1.5	4.3	97	123
Helical interpolation	WP**08*	80	1.5	2.9	131	157
milling		100	1.5	2.1	171	197
P V		125	1.5	1.3	221	247
		160	1.5	1.1	291	317
		50	3.0	7.2	70	96
		63	3.0	4.5	96	122
$P=tan_{\alpha} \times \pi \times D_1$ α :Helix angle		80	3.0	2.8	130	156
	WP**09*	100	3.0	2.2	170	196
		125	3.0	1.6	220	246
		160	3.0	1.2	290	316

Reduce the feed rate when plunging and circular milling. For drilling operations (axial) set the feed rate under 0.2mm. "Attention"—drilling can produce long chips.

Ramp milling, helical interpolation milling

Reduce the feed rate when plunging and circular milling.

For drilling operations (axial) set the feed rate under 0.2mm.

Recommended cutting parameters

		Hardness		Cutting speed	Ø	025	Ø30/32/35	
Wo	orkpiece material	HB	Insert grade	(m/min)	Axial cutting depth	Feed rate per tooth	Axial cutting depth	Feed rate per tooth
	Soft steel Carbon Steel	≤HB180 HB180-280	YBC302 YBM351 YBM253 YBG205 YB9320	170(120-220) 150(100-200)	0.6~1.5	0.6~1.2	0.6~1.2	0.5~1.4
P	Alloy steel Alloy tool steel	HB280-350	YBC302 YBM351 YBM253 YBG205 YB9320	130(80-180)	0.4~1.2	0.6~1.2	0.4~1.0	0.5~1.4
	pre-hardened steel	≤HRC35	YBC302 YBM351 YBM253 YBG205 YB9320	120(80-160)	0.4~1.0	0.5~1.0	0.4~1.0	0.5~1.0
M	Stainless steel	≤HB270	YBM351 YBM253 YBG205 YB9320	120(80-160) 120(80-190)	0.6~1.0	0.6~1.0	0.8~1.2	0.8~1.2
	Common cast iron	Tensile strength ≪350MPa	YBG302	150(100-200)	0.6~1.0	0.6~1.4	0.6~1.2	0.6~1.6
K	Nodular cast iron	Tensile strength ≪800MPa	YBG302	120(80-160)	0.4~0.8	0.5~1.2	0.4~1.0	0.5~1.4
e	Difficult-to-machine materials	≤100	YBS203	80(60-120)	0.6~1.0	0.6~1.0	0.8~1.2	0.8~1.2
9			YBS303	60(45-110)	0.4~0.8	0.4~0.8	0.4~1.0	0.4~0.8

Recommended cutting parameters

		Hardness		Cutting	Ø40		Ø50/63		Ø80/100	
Workp	piece material	HB	Insert grade	speed (m/min)	Axial cutting depth	Feed rate per tooth	Axial cutting depth	Feed rate per tooth	Axial cutting depth	Feed rate per tooth
	Soft steel Carbon Steel	≤HB180 HB180-280	YBC302 YBM351 YBM253 YBG205 YB9320	170(120-220) 150(100-200)	0.6~1.5	0.8~1.5	0.6~1.5	0.8~1.5	0.6~1.5	0.5~1.5
P	Alloy steel Alloy tool steel	HB280-350	YBC302 YBM351 YBM253 YBG205 YB9320	130(80-180)	0.4~1.2	0.6~1.5	0.4~1.3	0.6~1.5	0.4~1.3	0.5~1.5
	pre-hardened steel	≤HRC35	YBC302 YBM351 YBM253 YBG205 YB9320	120(80-160)	0.4~1.0	0.5~1.0	0.4~1.3	0.5~1.0	0.4~1.3	0.5~1.0
М	Stainless steel	≤HB270	YBM351 YBM253	120(80-160)	0.8~1.2	0.8~1.2	1.1~1.5	0.9~1.3	1.0~1.5	0.8~1.3
			YBG205 YB9320	120(80-190)						
	Common cast iron	Tensile strength ≪350MPa	YBG302	150(100-200)	0.6~1.5	0.8~1.6	0.6~1.5	0.8~1.7	0.6~1.5	0.6~1.7
K	Nodular cast iron	Tensile strength ≪800MPa	YBG302	120(80-160)	0.4~1.2	0.6~1.4	0.6~1.3	0.6~1.5	0.4~1.3	0.5~1.5
\$	Difficult-to-		YBS203	80(60-120)	0.8~1.2	0.6~1.0	1.1~1.5	0.6~1.2	1.0~1.5	0.4~1.2
	machine materials	≤400	YBS303	60(45-110)	0.4~1.0	0.4~1.0	0.6~1.2	0.6~1.0	0.4~1.0	0.4~0.8

After reasonable calculation and optimization, the axial and radial indination angles effectively reduce > the machining resistance of the tool.

The whole cutting tool can realize stable processing with excellent impact resistance and strong vibration registance

Screw clamping achieves high positioning accuracy and good economy.

XNRO3 Series of High Feed Milling Cutter

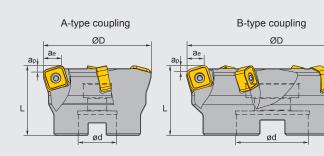
8 cutting edges on both sides achieve economical and cost-effective machining.

Large rake angle design, low cutting resistance, special edge shape and tool combination achieve a large chip space, leading to excellent chip removal performance.

4×2=8 cutting edges

Due to the good versatility, it can be used for large-feed processing of various steels, as well as processing viscous materials such as stainless steel and titanium alloy.

Indexable Milling Tools


High feed milling cutters

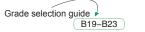
MIL

ING

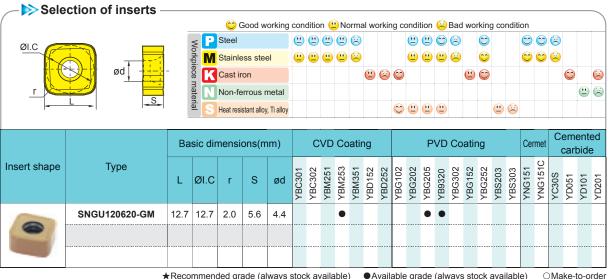
XMR03 🖸 M

Specification of tools

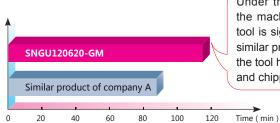

Туре		Stock		Basic	dimensions	Number of	Type of	Weight		
			ØD	a _p max	ae	L	ød	teeth Z	coupling	(kg)
XMR03	-050-A22-SN12-03		50	1.8	9.8	40	22	3	А	0.289
Coarse pitch	-063-A22-SN12-04		63	1.8	9.8	40	22	4	A	0.482
	-080-A27-SN12-05		80	1.8	9.8	50	27	5	A	1.014
	-100-B32-SN12-06		100	1.8	9.8	50	32	6	В	1.45
	-125-B40-SN12-07		125	1.8	9.8	63	40	7	В	2.7
Close pitch	-050-A22-SN12-04	\triangle	50	1.8	9.8	40	22	4	А	0.319
	-063-A22-SN12-05	Δ	63	1.8	9.8	40	22	5	A	0.512
	-080-A27-SN12-06	Δ	80	1.8	9.8	50	27	6	A	1.044
	-100-B32-SN12-07	Δ	100	1.8	9.8	50	32	7	В	1.48
	-125-B40-SN12-08	Δ	125	1.8	9.8	63	40	8	В	2.73
	-050-A22-SN12-05	\bigtriangleup	50	1.8	9.8	40	22	5	А	0.354
pitch	-063-A22-SN12-06	Δ	63	1.8	9.8	40	22	6	A	0.547
	-080-A27-SN12-07	\triangle	80	1.8	9.8	50	27	7	A	1.079
	-100-B32-SN12-08	\triangle	100	1.8	9.8	50	32	8	В	1.435
	-125-B40-SN12-09	\bigtriangleup	125	1.8	9.8	63	40	9	В	2.765


▲Stock available

riangleMake-to-order


Spare parts

	Insert screw	Wrench	
Tool type	and a second sec	, and the second	
XMR03DD-SD12DD	I60M4×10	WT15IP	


★Recommended grade (always stock available) Available grade (always stock available)

Recommended cutting parameters

				Cutting speed	Ø50/63		Ø80/125	
Worl	kpiece material	Hardness HB	Insert grade	(m/min)	Axial cutting depth	Feed rate per tooth	Axial cutting depth	Feed rate per tooth
P	Soft steel, carbon steel	≤HB180 HB180-280	YB9320 YBM253 YBG205	170(120-220) 150(100-200)	0.6~1.5	0.5~1.5	0.6~1.5	0.6~1.5
	Alloy steel, alloy tool steel	HB280-350	YB9320 YBM253 YBG205	130(80-180)	0.4~1.3	0.5~1.5	0.4~1.3	0.6~1.5
	Pre-hardened steel	≤HRC35	YB9320 YBM253 YBG205	120(80-160)	0.4~1.3	0.5~1.0	0.4~1.3	0.5~1.0
М	Stainless steel	≤HB270	YBM253	120(80-160)				05.12
			YBG205 YB9320	120(80-190)	0.4~1.5	0.4~1.2	0.4~1.5	0.5~1.3

XMR03series milling cutter processing case

Workpiece: 718H(HRC 34) Toolholder: XMR03-050-A22-SN12-03 Insert: SNGU120620-GM/YB9320 Cutting parameter: Vc=142m/min , fz=1.25mm/z , ap=0.8mm

Under the same circumstances, the machining life of our XMR03 tool is significantly better than the similar product of company A, and the tool has better wear resistance and chipping resistance.